Solution Sheet 3
Exercise 3.1.

Let (X;) be a collection of separable metric spaces. Prove that the infinite product II?°, Aj,
equipped with product topology, is separable.

Proof. Recall that a set A is dense in 1152, A} if for every non-empty open set O C 115, X;, we have
that AN O # . Also recall that, from the definition of the product topology, if O C II°,AX; is
non-empty and open then there exists an open set U C O such that

U = (I, U3) x (12,4, ) &

where each U; C X; is open. Let D; be the countable dense subset of A;, and fix any sequence of
elements (z;) such that x; € X;. Define

Ay = (I, Dy) x (1152, {a:})

and -
A= U A,
n=1

Then A is countable as the countable union of countable sets, and it is dense as any set of the form
(1) has non-zero intersection with A,, C A by the density of each D; in X;, i =1,...,n.
O

Exercise 3.2.

Let (x,) be a sequence in the metric space X, and x € X. Prove that (z,) converges to x in
X, if and only if the associated sequence of delta measures (d,,,) converges weakly to 0.

Proof. We consider the implications separately:

—>: We assume that x,, — z, and wish to show that for all bounded and continuous f : X — R

that
/fdézn%/fdéx
X X

which is by definition simply f(x,) — f(x). This is immediate from the continuity of f.

<= : We assume that, as described above, f(z,) — f(x) for all bounded and continuous f, and
wish to show that z,, — z. Suppose for a contradiction that this was not true; thus, there
exists an € > 0 such that for all N € N, there exists an n > N such that z, ¢ B.(z),
where B.(z) denotes the open ball of radius ¢ centred at . We can construct a bounded
continuous function f, exactly as we did in Exercise 2.4, satisfying f(x) =1 and f(z) = 0 for
all z ¢ Be(x). Then f(x,) cannot converge to f(z), generating the desired contradiction.

O

Exercise 3.3.

Let X be a separable metric space, and (u,) be a collection of (uniformly) tight probability
measures on X.



1. Show that there exists a subsequence (i, ) and a probability measure p on X such that (py, )
is weakly convergent to u.

2. Let € > 0 and K be a compact set such that u,(X\K) < € for all n. Prove that u(X\K) < e.
Proof. We prove the parts in turn:

1. This is a direct application of Prohorov’s Theorem (Theorem 2.3.7) and the property of being
relative compact in the topology of weak convergence in P(X).

2. As K is compact then it is closed, so X\ K is open. By the Portmanteau Theorem (Proposition
2.3.2) then
H(X\E) < T inf i, (X\K).
Ng—r00

By assumption each pi,, (Y\K) < ¢, so liminf,, oo tin, (XY \K) < €, hence the result.

Exercise 3.4.

Let X be a metric space and P(X) the space of probability measures on X'. Prove that limits
in the topology of weak convergence on X are unique.

Proof. Suppose that (u,) is a sequence in IP(X) which is weakly convergent to both p and v. Then
for every bounded and continuous function f : X — R we have that ( I+ fdun) converges to both
[y fdp and [, fdv. By uniqueness of limits in R then

/deu—/xfdv

which implies that y = v due to Theorem 2.2.2. O

Exercise 3.5.

Let X, Y be metric spaces and (i) a sequence in P(X), (v,) a sequence in P()). Prove that
the sequence of product measures (u, @ vy,) is tight in P(X x Y) if and only if (u,,) is tight in P(X)
and (vy,) is tight in P(Y).

Proof. We prove the implications in turn:

= : We assume that (p, ® v,) is tight. Then for any given ¢ > 0 which is henceforth fixed, there
exists a compact K C X x ) such that p, ® v,(K) > 1— ¢ for all n € N. To prove tightness
of () we wish to find a compact Ky C X such that p,(Kx) > 1 —¢ for all n € N. We
define Kx := mx(K) where 7x is the projection mapping onto X. As mx is continuous with
respect to the product topology, then 7x (K) is the continuous image of a compact set hence
compact. Moreover,

pn(Tx (K)) = pin @ vp (rx (K) X V) > pn @ v (K) > 1 —¢

as required. The same process holds true for (v,), completing the proof.



<= : We assume that (u,) and (v,,) are tight. Then for any given £ > 0 which is henceforth fixed,
there exists compact sets Kx C & and Ky C Y such that pu,(Kx) >1—¢, v,(Ky) >1—¢
for all n € N. We wish to find a compact K C X x ) such that p, ® v,(K) > 1—¢, or
equivalently that p, ® v, (X x Y\K) < e. Define K := Kx x Ky, which is compact as the
product of compact sets in the product topology. Observe that

K= (Kx xY)N(X x Ky)
so using the general rule that P(AN B) > P(A) + P(B) — 1, then

tn @ Un(K) > i, @ U (Kx X V) + pin @ vp (X x Ky) — 1
= pn(Kx) +vp(Ky) —1
>1-eg)+(1—-¢)—-1
>1—2¢

which is sufficient to conclude by an arbitrary replacement of ¢ with §.

Exercise 3.6.

Let (pn), u € P(RY) satisfy that for all continuous and compactly supported f : R — R,

/Rd fdpn — /Rd fdu (2)

asn — oo. Assume in addition that the sequence (j,,) is tight. Prove that (u,) is weakly convergent
to u.

Proof. We fix an arbitrary continuous and bounded ¢ : R — R, with the aim to show that

/Rdsbdun—>/Rd¢du

as n — oo. Recall the following classical fact from analysis: if (a,) is a bounded sequence in R such
that every convergent subsequence is convergent to a € R, then the full sequence (a,,) is convergent

to a. We set
an :—/ Odpiy.
Rd

Firstly each |ay| is bounded by sup,cra|¢(z)|. Take any convergent subsequence a,, — a. As
(#ny,) is tight then it contains a further subsequence (fi,,,) which is weakly convergent to some
v € P(R?). By definition of this weak convergence,

/Rd Gdpim; — /Rd ¢dv

and the limit a of (a,,) must agree with the limit of its subsequence (@, ), s0 a = [pq ¢dv. We
now show that v = p. Indeed as (um,) is weakly convergent to u then certainly for all continuous
and compactly supported f : R — R,

/Rd Jdpm; — /Rd fdv.

3



Combined with (2),
fdv = / fdup
R4 R4

for all such f. From the solution of Exercise 2.4 this implies that u = v as desired, so

o= [ o

This limit is independent of the choice of converging subsequence, so every convergent subsequence

of (a,) gives a, hence the entire sequence converges to a which concludes the proof.
O

Exercise 3.7.

Let X, be complete and separable metric spaces, (u,) a sequence in P(X) weakly convergent
to some p € P(X) and (v,,) a sequence in P()) weakly convergent to some v € P()). Prove that
the sequence of product measures (i, ® vy,) is weakly convergent to p ® v in P(X x ).

Proof. We look to take a similar approach to the proof of Exercise 3.6. Indeed Exercise 3.6 relied
on the fact that the convergence (2) was known for a measure determining class of functions f, and
that the sequence of measures was tight. For the first of these ingredients, we consider the class of
all functions f : X x Y — R such that there exists a continuous bounded g : ¥ - Rand h: Y — R
whereby f(z,y) = g(z)h(y). We claim two properties:

1. For all such f,

/ fd(pn ® vy) — fd(p®v)
XxYy XxY

as n — oo.
2. This class of functions is measure determining.

For the first claim, observe that

J o= () (f )

by Fubini’s Theorem, and similarly for p ® v. By the weak convergence assumption we have that

/ gdpin —> / gdp
X X

and similarly for fy hdvy,, from which we deduce the first claim. For the second we invoke Theorem
2.2.5, as X x ) is itself a complete separable metric space, and the class of such functions is an
algebra as (g1h1)(g2h2) = (g192)(h1h2) is in the class, and separates points as one can take g or h
to be the constant 1 as in Exercise 2.6. Theorem 2.2.5 thus gives the second claim.

The other aforementioned ingredient is that the sequence of measures (i, ® vy,) is tight. This
arises from showing that (u,) is tight in P(X) and similarly for (v,), appealing to the converse
of Prohorov’s Theorem, Theorem 2.3.8; indeed (u,) weakly convergent to p implies that every
subesequence has a further subsequence weakly convergent to p by Proposition 2.3.3, hence the
collection (u,) is relatively compact so tight by the converse of Prohorov’s Theorem. The same is



true of (v,), hence the product is tight by Exercise 3.5.

With these properties, the proof is identical to that of Exercise 3.6.



